Cytoskeleton and Cell Motility

1. (28 pts) *Amoeba proteus*, a single-celled eukaryote, moves by means of psudopods attaching to and detaching from the substratum. Locomotion seems to be correlated with the forward flow of fluid cytoplasm (endoplasm) into an advancing pseudopod through a surrounding, gel-like ectoplasmic tube. The ectoplasm forms at the pseudopodial tip in a region called the Fountain Zone. As the amoeba advances the ectoplasmic tube "liquifies" at the posterior end to form endoplasm. These features are illustrated in the figure below.

A. (4 pts) When amoeba undergoes cell division, it stops streaming and rounds up into a spherical cell. Describe how this change in shape and behavior comes about and why it might be a necessary precondition for division.

B. (6 pts) Briefly describe how cytoplasmic streaming is most likely organized and generated at the cellular and molecular levels.

C. (5 pts) Briefly describe an additional experiment or observation that would test your hypothesis and indicate clearly what the results would show.

D. (8 pts) Describe clearly, with the aid of a well-labeled diagram, how streaming *within* a pseudopod could result in movement of the amoeba across the substratum.

E. (5 pts) Describe how your streaming mechanism might be regulated such that the amoeba might change its streaming pattern to form phagocytic pseudopods around a ciliate it had touched.

Now evaluate some past answers to these questions, in light of your own essays. Note that better answers contain more information that you have covered at this point in the course. On

the other hand, you may now know more about the various mechanisms than the students who answered these questions in the mid '90's did!

A. (4 pts) When an amoeba undergoes cell division, it first stops streaming and rounds up into a spherical cell. Describe how this change in shape and behavior comes about and why it might be a necessary precondition for division.

Answer

Comment

Example 1. In order for the single cell to	
divide it must become a shape that is	A good start, but more mechanistic
spherical enough for the spindle to form and	detail is required: what sorts of
an even distribution of cytoplasmic material	cytoskeletal elements are involved?
to take place when cytokinesis happens. Also,	°
cytokinesis cannot take place with a firm gel-	
like tube in the middle of the cell. In order for	Wordy! Simply restates information
cell division to occur. the gel-like tube will	provided.
dissolve into all endoplasm which is a liquid	r
form. The cytoskeleton will form as a normal	"normal" is vague – what does it mean in
eukarvotic cell and cytokinesis will divide the	this context?
cell Once the cell has full divided the	
endoplasm will form a new ectoplasm tube	
again and all will continue	
again and an win continue	

Contrast the first answer with the following:

ver from
blished;

How did your answer to the Question B. compare with those on the next page?

B. Briefly describe how cytoplasmic streaming is most likely generated and organized at the molecular and organelle level.

Example 1. The endoplam is a basic	
component of ectoplasm. This, the association	
of many endoplasmic forms ectoplasm in a	Garbled fact: G-actin is a subunit of F-
similar way [that?] F-actin makes up G-actin	actin (microfilament).
to form microfilaments. The assocation forms	
a gel-like tube that is unstable at both ends.	
When endoplasm is in its component form, it	This is an interesting but unfocused
is a liquid. However, when it associates with	essay. It is interesting insofar as it
other endoplasms to make ectoplasm it forms	attempts to relate various aspects of
a gel.	streaming to cellular locomotion, BUT
The movement of the organism is caused by	this discussion is irrelevant to the
the breakdown or dissociation of the	question asked. What the likely "motors"
ectoplasm gel tube into its liquid endoplasm	are and where are they located are not
at the posterior end of the tubule causing	addressed.
fro?? pseudopod. This endoplasm then flows	
through the remain gel ectoplasm tube. The	
breakdown always happens at the posterior or	Confusing polarity of MT and MF
(-) end. For each molecule of ectoplasm that	organelles with cellular polarity.
dissociates, another molecules of endoplasm	
will associate at the (+) end toward the	
pseudopod. This allows the ectoplasmic tube	The handwriting was actually difficult to
to remain about the same length while the	decipher, and grammatical errors
endoplasm at the end of the tube is allowed to	increased the reader's difficulties.
flow all the way to the front. The plasma	
membrane is fluid so it conforms to the	
changing shape of the org[anism?].	

By comparison, what do you think of this answer? Add your comments in the space provided.

Example 2. Pseudopod extentions can be	
generated throug the interaction of actin (MF)	
and myosin. High ATP and Ca levels could be	
present at the pseudopod which would allow	
myosin to be phosphorylated. The actin	
would be forming microfilaments from G-actin	
because of the high ATP concentration at the	
pseudopod. Once phosphorylated, myosin	
could interact with the actin microfilaments	
to produce the force necessary to extend the	
pseudopod. As the pseudopod extends fluid	
endoplasm would move into the pseudop. The	
presence of a high conc. of Ca/calmodulin at	

the sol-to-gel transition could cause myosin to	
be phosphorylated by its light-chain kinase.	
A low conc of at the gel-to-sol transition area	
could cause the gel cytoplasm to beome fluid,	
allowing it to flow toward the pseudpod. It	
could be come fluid as actin at the (-) end of	
the MF depolymerizes or as myosin filaments	
disassociate do to dephosphorylation. Once	
disassociated, the subunits (G-actin and free	
myosin) could move in the fluid cytoplasm to	
where it is needed again for further	
streaming.	

The validity of these two mechanisms were tested, respectively, in the following two examples of answers to **part C**. What do you think of them, as applicable to the two answers and more generally?

Example 1. To test this hypothesis, an	
inhibitor could be added to inhibit the	
breakdown of "liq??ficati??" of the ectoplasmic	
tube. We know that the breakdwon of the	
ectoplasm can be stopped or inhibited by	
cytochalasin B. When cytochalasin B is added	
to the cell I [verb???] gradually the movement	
of the cell and cytoplasmic streaming will stop	
(and it does as stated above) because no more	
breakdown of the ectoplasm is possible. Also	
we may want to mark one molecule with a	
radioactive pulse label. By doing this, one	
could follow the passage of the endoplasm	
from the (+) end of the ectoplasm all the way	
to the (-) end and the dissociation of the	
endoplasm and as travelling down the	
ectoplasm tube to the pseudopod and its	
gradual incorporation back into the	
ectoplasm. This is an even more visible	
experiment, that should show a similar effect	
as the treadmilling of microfilaments.	
Example 2. A good way to test this	
hypothesis would be to eliminate the	
transformation from ectoplasm to endoplasm,	
for the contraction this results in is what	
powers the streaing., The polkymerization of	
globular actin into filamentous actin depends	

on the ratio of G-actin-ATP/G-actin-ADP	
subunits. If much G-actin-ADP was	
introduced into the system, say by	
microinjection, right after the formation of a	
new A. proteus, the concentration of G-actin-	
ATP would be so low that polymerization into	
microfilaments should be greatly inhibited. If	
this is the case, endoplasm-ectoplasm	
transition will never take place and the basis	
for cytoplasmic streaming can never be	
established. This will show that streaming is	
caused by the contraction resulting at the sol-	
gel transition. Introducing cytochalasin B,	
which interferes with microfilament	
assembly, could test this hypothesis as well,	
but I assumed you wanted to hears something	
else since cytochalasin B was mentioned in	
the question.	

Question D. asks you to relate streaming *within* a pseudopod to locomotion of the whole cell across the substratum. Critique the two answers that follow and note in particular whether the qualities of the essays and diagrams are at all correlated. **Note** also an important feature of locomotion is missing from all 3 answers, which is important for answering Question E.

Question E. concerns the *regulation* of streaming, using a change in locomotory behavior for feeding as an example. The best answers derive details from examples and focus on the general features of the problem.

	Comment
Example 1. It would be regulated by the	
direction and speed of the movement of the	
pseudopod. If the movement of the organism	
were quick, the breakdown or assembly of the	
ectoplasm would obviously be quick.	
However, the organism can only change	
direction be moving the pseudopod to the	
other end of the [???] through the channel and	
switching the breakdown/assembly of the	
ectoplasm polarity	
The creature moves around the ciliate by	
angulfing it by phagocytosis. This occurs by	
the ectoplasm breaking down until has	
completely surrounded the cilipte and then	
reactivating once the cell has ch[2222] it	
Example 2 . There could be receptors on the	
plasma membrane which would detect when	
it touched a ciliate. When this occurred, the	
direction of the streaming could be changed to	
move towards the ciliate. The pseudopod	
would move toward the ciliate, its plasma	
membrane enveloping it as it got closer.	
When the membrane completely surrounded	
the ciliate, the inner and outer membranes	
created could fuse with themselves, creating a	
closed pseudopod with a phagocytotic vacuole	
inside that could be brought to a lysosome for	
digestion. The streaming toward the ciliate	
could be regulated by controlling ATP-G-actin	
concentrations, making them higher therefore	
creating more actin filaments, increasing sol-	
gel transformations and the pressure that	
creates pseudopod extension. Perhaps the	
receptors activate a second messenger which	
in turn activates the polymerization of F-	
actin.	