

Announcements

> I added links to resources on unfamiliar and endangered languages that should help you as you search for a LAP language. LINK
> I also activated the link to a list of LAP guideline questions. This should help you as you write your LAP report.
> LAP languages are assigned on a first-come first-served basis. No two students can choose the same language.

Wanna-contraction?

> *Who do you wanna kiss Mary?
> Any thoughts on the wanna-contraction puzzle?

Another visual illusion (just for fun)

> http://www.youtube.com/watch?v=hPCoe6RRks\&feature=player embedded\#!

What's syntax?

SYNTAX
is the study of sentence structure in human language.

Syntax

> There are several aspects of syntactic knowledge that native speakers have about their language.
> We have already seen that in the puzzles about copula contraction and questionformation.
> Let's look at some more examples.

Syntactic knowledge: Grammaticality

> Native speakers know what is grammatical and what is ungrammatical in their language, e.g.,
The silly man hit the nice woman.
*Silly hit man the nice the woman.

Syntactic knowledge: Ambiguity

> Our syntactic knowledge also enables us to understand cases of ambiguity. Remember these sentences?

Anne hit the man with an umbrella. Visiting relatives can be a nuisance. We need more honest politicians. This is a large man's hat.

Syntactic knowledge: Sentence relatedness
> Another case of sentence relatedness is that between statements and questions:

They will be in London tomorrow.
Will they be in London tomorrow?

Syntactic knowledge: Grammaticality

> Remember too from Assignemnt\#1 that grammaticality does not depend on meaning. A sentence can be grammatical even if it is meaningless, e.g.

Colorless green ideas sleep furiously.
> Similarly, we can figure out the meaning of an ungrammatical sentence, e.g.
*I will in the office for you wait.
> These two facts seem to suggest that syntax is an autonomous system, that is, it has its own rules independent of meaning.

Syntactic knowledge: Sentence relatedness

> Our knowledge of the syntax of our language also enables us to know cases of synonymy or near-synonymy between sentences, as the case is with active and passive senesces:

John broke the window.
The window was broken by John.
> The same also applies to pairs of sentences like this one, where again two different structures have the same meaning:

John gave a book to Mary.
John gave Mary a book.

Syntactic knowledge: Recursiveness

> Recall also that our use of language is creative, that is, we are able to produce and understand an infinite number of sentences, even though our linguistic resources are finite: Wilhelm von Humboldt's famous phrase "infinite use of finite means."
> Remember also that a sentence in human language could in principle be recursively infinite as in the following example:

This is the dog that chased the cat that killed the rat that ate the cheese that was on the table that was in the room that ...

Cross-linguistic variation
 (e.g., in word order)

> And as we have seen with phonology and morphology, languages can also differ dramatically in their syntax.
> English
The child might think that she will show Mary's picture of John to Chris.
> Japanese:
Taroo-ga Hiro-ga Hanako-ni zibun-no Taroo-SU Hiro-SU Hanako-to self-POSS
syasin-o miseta to omette iru picture-OB showed that thinking be
"Taro thinks (literally, is thinking) that Hiro showed a picture of himself to Hanako."

Syntax

> For our theory of grammar to be adequate, it has to account for the different aspects of native speakers' subconscious syntactic knowledge.
$>$ In addition, it should also tell us why languages differ in their sentence structures the way they do.
> In the syntax section of this class, we discuss these two issues.

Constituency

> A sentence is not a random sequence of words; rather, every sentence has a syntactic structure.
And the key notion to understanding syntactic structure is that of constituency. Let's see what this means.

Constituency

> Consider the following sentence:
The linguist has drawn a tree.
> If I ask you to divide the sentence into two units, where would you draw the line?
> Right:
(1) The linguist | has drawn a tree.

Constituency

> Intuitively, we "know" that certain words "hang together" in the sentence to the exclusion of others. We call such strings of words "constituents".
> And we can actually determine constituency by means of "objective" diagnostic tests. Let's consider what these tests are.

Substitution test for constituency
> If a string of words can be replaced by one word and the result is a grammatical sentence while preserving the original meaning, then it must be that this string of words comprises a "constituent".

Substitution test for constituency

(2) a. [The linguist] has drawn a tree. \checkmark He has drawn a tree.
b. The linguist has drawn [a tree]. \checkmark The linguist has drawn it.
c. The [linguist has drawn a tree]. *The ???
d. [The linguist has] drawn a tree. *??? drawn a tree.
e. [The linguist has drawn a] tree. *??? tree.
f. The linguist [has drawn a tree]. The linguist has. (In response to "Who has drawn a tree?")

Movement test for constituency

> If a string of words can be moved together in a sentence keeping the same meaning intact, then this string of words comprises a "constituent":
(4) a. We will hold the meeting [in Sam's office].

In Sam's office we will hold the meeting .
b. We will hold [the meeting in Sam's office].
*The meeting in Sam's office we will hold.

Substitution test for constituency

(3) a. [The tall boy] ate the burrito. $\checkmark \mathrm{He}$ ate the burrito
b. The tall boy ate [the burrito]. \checkmark The tall boy ate it.
c. [The tall boy ate] the burrito. *??? the burrito.
d. The tall boy [ate the burrito].
\checkmark The tall boy did (so). (in response to "Who ate the buritior)
e. The tall boy ate the burrito [in the classroom]. The tall boy ate the burrito there.
f. The tall boy ate [the burrito in the classroom]. *The tall boy ate it. (The sentence may look ok, but we changed the meaning)

Movement test for constituency

c. I know he will [eat the whole pizza], and eat the whole pizza he will.
d. *I know he [will eat the] whole pizza, and will eat the he whole pizza.
e. I read [this book by Chomsky] before. This book by Chomsky I read before.
f. I read this book [by Chomsky before].
*By Chomsky before I read this book.

Clefting

> Clefting (It is X that ...) may also be used as a constituency diagnostic:
This linguist drew several trees on the board.
It is this linguist that drew several trees on the board. It is several trees that this linguist drew on the board. It is on the board that this linguist drew several trees. *It is trees on that this linguist drew the board.
*t is linguist drew that this several trees on the board.

Stand-alone test (using answers to questions)
> If a string of words can stand alone as an answer to a question, then it is a constituent, e.g.,

Q: What did John eat?
A: The whole pizza./*The whole.

Q: What did John do?
A: Eat the whole pizza./*Eat the.

Phrase structure: Heads and complements

> Once we determine that a string of words is a constituent, the next step is to determine its syntactic category.
> For this we make a distinction between a head and a complement.
> The head is the central word in a string, the one that requires other elements to be there.
> The complement is the part of the string that is there because of the head.
> The head and the complement together form what we call a phrase, and the type of the syntactic category of the whole phrase is that of the head.

Phrase structure: Heads and complements

> Remember from our discussion of morphology that there are four major lexical categories in human language (well, prepositions are iffy, but let's assume they are lexical for now):

Noun (N),
Verb (V),
Adjective (A), and
Preposition (\mathbf{P}).
> As we should expect, each one of these categories can be the head of a phrase.
PhraSe structure:
Heads and complements
> So,

- "picture of the boys" is
a noun phrase (NP), since the head of the string is the N
"picture". "ate the sandwich", by contrast, is
a verb phrase (VP), since the head of the string is the V
"ate".
- "in the office" is
a prepositional phrase (PP), since the head of the string
is the P"in".
- "fond of chocolate" is
an adjectival phrase (AP), since the head of the string is
the A "fond".

Subcategorization

> Notice that heads differ as to whether they need complements and how many they take. Technically, we say they have different subcategorization properties.
> For example, transitive verbs require complements, but intransitive verbs do not:

John slept.
*John slept the dog.
John bought a new car.
*John bought.
> Remember the eat-devour puzzle?

Phrase structure rules

$>$ We express this head-complement relationship by means of rewriting rules, which we call phrase structure rules, as in the following examples:
$\mathrm{NP} \rightarrow \mathrm{N} \mathrm{PP}$
$\mathrm{VP} \rightarrow \mathrm{V}$ NP
$\mathrm{PP} \rightarrow \mathrm{PNP}$
$\mathrm{AP} \rightarrow \mathrm{APP}$

Subcategorization

> Furthermore, transitive verbs differ in whether they subcategorize for an NP complement like "buy" above, or a PP complement as "talk":

I talked [pP to his boss].
> Some transitive verbs even require two complements, such as "give" and "put":

She gave [${ }_{N P} \mathrm{me}$] [${ }_{N P}$ money].
Alice put [${ }_{N P}$ the car] [pP in the garage].

Table 5.5 Some examples of verb complements

Complement option	Sample heads	Example
\varnothing	vanish, arrive, die	The rabbit vanished -.
NP	devour, cut, prove	The professor proved I_{NP} the theorem].
AP	be, become	The man became ${ }_{\text {AP }}$ very angry.
$\mathrm{PP}_{\text {to }}$	dash, talk, refer	The dog dashed [$\mathrm{Ipp}^{\text {to }}$ the door].
NP NP	spare, hand, give	We handed I_{NP} the man] l_{NP} a map].
$\mathrm{NP} \mathrm{PP}_{\text {to }}$	hand, give, send	She gave $¢_{\text {NP }}$ a diploma) [pp to the student].
$\mathrm{NP} \mathrm{PP} \mathrm{f}_{\text {for }}$	buy, cook, reserve	We bought [${ }_{\text {Np }}$ a hat] [pp for Andy].
$\mathrm{NP} \mathrm{PP}{ }_{\text {loc }}$	put, place, stand	She put [${ }_{\text {NP }}$ the muffer] [pp on the car].
$\mathrm{PP}_{\text {to }} \mathrm{PP}_{\text {about }}$	talk, speak	I talked [pp to a doctor] [pp about Sue].
$\mathrm{NP} \mathrm{PP}_{\text {for }} \mathrm{PP}_{\text {with }}$	open, fix	We opened ${ }_{\text {[NP }}$ the door) Ipp $^{\text {for John] }}$ ${ }_{\text {[pp }}$ with a crowbar].

Table 5.9 Some verbs permitting CP complements

Complement options	Sample heads	Example
CP	believe, know, think, remember	They believe [çt that Mary left].
NPCP	persuade, tell, convince, promise	They told $\left\lceil_{\text {NP }}\right.$ Eric $\left[_{C P}\right.$ that Mary had left].
$\mathrm{PP}_{\text {to }} \mathrm{CP}$	concede, admit	They admitted [pp to Eric] ${ }_{[C p}$ that Mary had left].

Phrase structure: Specifiers

> While complements may be obligatory (depending on the subcategorization properties of the head), a head may also have nonobligatory
"satellite" elements, called specifiers, e.g.,

- an adverb (Adv) of a V : sometimes rents a car.
- a determiner (Det) of an N : the linguist
- a degree (Deg) word of an A or a P: very nice/ straight into the room

```
Table 5.6 Some examples of noun complements
\begin{tabular}{|c|c|c|}
\hline Complement option & Sample heads & Example \\
\hline \(\varnothing\) & car, boy, electricity & the car - \\
\hline \(\mathrm{PP}_{\text {of }}\) & memory, failure, death & the memory [pp of a friend] \\
\hline \(\mathrm{PP}_{\text {of }} \mathrm{PP}_{\text {to }}\) & presentation, gift, donation & the presentation \([p p\) of a medal] [pp to the winner] \\
\hline \(\mathrm{PP}_{\text {with }} \mathrm{PP}_{\text {about }}\) & argument, discussion, & an argument \([\) [pp with Stella] \\
\hline
\end{tabular}
```

Complement option	Sample heads	Example
\varnothing	tall, green, smart	very tall
$\mathrm{PP}_{\text {about }}$	curious, glad, angry	curious [pp about China]
$\mathrm{PP}_{\text {to }}$	apparent, obvious	obvious [pp to the student]
$\mathrm{PP}_{\text {of }}$	fond, full, tired	fond [pp of chocolate]

Table 5.8 Some examples of preposition complements

Complement option	Sample heads	Example
ø	near, away, down	(he got) down -
NP	in, on, by, near	in INP $^{\text {the }}$ house]
PP	down, up, out	down [pp into the cellar]

X'-schema for phrase structure

> To generalize, using X as a variable ranging over all heads, every phrase has the internal structure below:
(5)

> (Note: The intermediate level between X and $X P$ is pronounced X-bar.)
> We can then apply this X^{\prime}-schema to all heads.

AuxP

> But now consider this sentence:
(11) John ate the pizza.
> Since the subject "John" is still present, we have to assume that there is some "Aux" element in the sentence, since subjects are specifiers of Aux. But it does not look like there is a modal verb there.
> Linguists assume that the tense morpheme is actually a form of Aux (or that Aux is a form of tense, but this is a labeling issue and not really significant).

AuxP

> The structure of "John ate the pizza" will look like that, then:
(12)

> Question: How does "eat" and "past" become the word "ate"?

One more category

> Consider the complement (also called embedded clause) of the verb "says" in (13) John says [that he will eat the pizza].
> Now, the embedded clause looks identical to the AuxP in tree \#10, except that it has an extra element: the so-called complementizer that, which is said to carry the illocutionary force of the clause, i.e., it marks the clause as either declarative, interrogative, etc.

CP

> Using the same X^{\prime}-schema, this must be a head-complement relation (though no specifier is available here, but remember that specifiers are optional).
> Let's assume then that a complementizer (abbreviated C) also heads a phrase, and that its complement is AuxP, as shown on the next slide:

A mini-grammar for English: Phrase structure rules

- So putting all of this together, here's a mini-grammar for English phrase structure, where parentheses indicate optionality: (Note: This is by no means an exhaustive list.) (16)
$\mathrm{CP} \rightarrow$ C AuxP
AuxP \rightarrow NP Aux'
Aux' \rightarrow Aux VP
$\mathrm{VP} \rightarrow \mathrm{V}$ (NP) (PP)
$\mathrm{VP} \rightarrow \mathrm{V}$ (CP)
$\mathrm{VP} \rightarrow \mathrm{V}(\mathrm{AP})$
$N P \rightarrow$ (Det) $N(P P)$
$\mathrm{PP} \rightarrow(\mathrm{Deg}) \mathrm{P} \mathrm{NP}$
$\mathrm{AP} \rightarrow(\mathrm{Deg}) \mathrm{A}(\mathrm{PP})$

One possible structural tree of a simple English sentence

A mini-grammar for English:
Lexical rules

- A grammar must also include a set of rules that insert words from the lexicon under "terminal" nodes in the tree, e.g.,
$\mathrm{N} \rightarrow$ \{man, dog, justice, ...\}
V $\rightarrow\{$ love, hit, leave, ...\}
Aux \rightarrow \{will, must, Past, ...\}
Det \rightarrow \{the, a, an, his, some, ...)
etc.
> As you should expect, these are called lexical insertion rules.

Tree-drawing exercise

> For Wednesday's class after the break, draw syntactic tree diagrams for the following sentences:

1. Our children like this music.
2. John is proud of his medals.
3. The linguist knows that this language has become extinct.

Next class agenda

> More syntax: Accounting for ambiguity and sentence relatedness. Introducing transformational rules.

Have a good break everyone!

